Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.448
Filtrar
1.
Biol Lett ; 20(5): 20230505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38746981

RESUMEN

Factors that increase reproductive variance among individuals act to reduce effective population size (Ne), which accelerates the loss of genetic diversity and decreases the efficacy of purifying selection. These factors include sexual cannibalism, offspring investment and mating system. Pre-copulatory sexual cannibalism, where the female consumes the male prior to mating, exacerbates this effect. We performed comparative transcriptomics in two spider species, the cannibalistic Trechaleoides biocellata and the non-cannibalistic T. keyserlingi, to generate genomic evidence to support these predictions. First, we estimated heterozygosity and found that genetic diversity is relatively lower in the cannibalistic species. Second, we calculated dN/dS ratios as a measure of purifying selection; a higher dN/dS ratio indicated relaxed purifying selection in the cannibalistic species. These results are consistent with the hypothesis that sexual cannibalism impacts operational sex ratio and demographic processes, which interact with evolutionary forces to shape the genetic structure of populations. However, other factors such as the mating system and life-history traits contribute to shaping Ne. Comparative analyses across multiple contrasting species pairs would be required to disentangle these effects. Our study highlights that extreme behaviours such as pre-copulatory cannibalism may have profound eco-evolutionary effects.


Asunto(s)
Canibalismo , Variación Genética , Selección Genética , Conducta Sexual Animal , Arañas , Animales , Arañas/genética , Arañas/fisiología , Masculino , Femenino , Evolución Biológica
2.
PLoS One ; 19(5): e0302028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718094

RESUMEN

Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.


Asunto(s)
Quirópteros , Conducta Predatoria , Arañas , Animales , Quirópteros/parasitología , Quirópteros/fisiología , Bovinos , Arañas/fisiología , Conducta Alimentaria , Estaciones del Año , Dieta , Dípteros/fisiología , Bélgica , Ecosistema
3.
Biol Lett ; 20(4): 20240009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653332

RESUMEN

Heatwaves are increasingly prevalent and can constrain investment into important life-history traits. In addition to heatwaves, animals regularly encounter threats from other organisms in their environments, such as predators. The combination of these two environmental factors introduces a decision-making conflict-heat exposure requires more food intake to fuel investment into fitness-related traits, but foraging in the presence of predators increases the threat of mortality. Thus, we used female variable field crickets (Gryllus lineaticeps) to investigate the effects of heatwaves in conjunction with predation risk (exposed food and water sources, and exposure to scent from black widow spiders, Latrodectus hesperus) on resource acquisition (food intake) and allocation (investment into ovarian and somatic tissues). A simulated heatwave increased food intake and the allocation of resources to reproductive investment. Crickets exposed to high predation risk reduced food intake, but they were able to maintain reproductive investment at an expense to investment into somatic tissue. Thus, heatwaves and predation risk deprioritized investment into self-maintenance, which may impair key physiological processes. This study is an important step towards understanding the ecology of fear in a warming world.


Asunto(s)
Gryllidae , Conducta Predatoria , Arañas , Animales , Gryllidae/fisiología , Femenino , Arañas/fisiología , Calor/efectos adversos , Reproducción/fisiología , Ingestión de Alimentos
4.
Oecologia ; 204(4): 789-804, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561554

RESUMEN

Worldwide, with the decline of natural habitats, species with reduced niche breadth (specialists) are at greater risk of extinction as they cannot colonise or persist in disturbed habitat types. However, the role of thermal tolerance as a critical trait in understanding changes in species diversity in disturbed habitats, e.g., due to forest replacement by tree plantations, is still understudied. To examine the role of thermal tolerance on the responses of specialist and generalist species to habitat disturbances, we measured and compared local temperature throughout the year and thermotolerance traits [upper (CTmax) and lower (CTmin) thermal limits] of the most abundant species of spiders from different guilds inhabiting pine tree plantations and native Atlantic Forests in South America. Following the thermal adaptation hypothesis, we predicted that generalist species would show a wider thermal tolerance range (i.e., lower CTmin and higher CTmax) than forest specialist species. As expected, generalist species showed significantly higher CTmax and lower CTmin values than specialist species with wider thermal tolerance ranges than forest specialist species. These differences are more marked in orb weavers than in aerial hunter spiders. Our study supports the specialisation disturbance and thermal hypotheses. It highlights that habitat-specialist species are more vulnerable to environmental changes associated with vegetation structure and microclimatic conditions. Moreover, thermal tolerance is a key response trait to explain the Atlantic Forest spider's ability (or inability) to colonise and persist in human-productive land uses.


Asunto(s)
Ecosistema , Bosques , Arañas , Termotolerancia , Árboles , Animales , Arañas/fisiología
5.
Ecol Lett ; 27(3): e14394, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511320

RESUMEN

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long-standing questions about foraging in nature.


Asunto(s)
Animales Ponzoñosos , Conducta Predatoria , Arañas , Animales , Humanos , Conducta Predatoria/fisiología , Arañas/fisiología
6.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509643

RESUMEN

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Asunto(s)
Arañas , Animales , Arañas/fisiología , Suiza , Escarabajos/fisiología , Tamaño Corporal , Urbanización , Ecosistema , Sequías , Artrópodos/fisiología , Bosques
7.
Psychophysiology ; 61(6): e14546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38406863

RESUMEN

The current registered report focused on the temporal dynamics of the relationship between expectancy and attention toward threat, to better understand the mechanisms underlying the prioritization of threat detection over expectancy. In the current event-related potentials experiment, a-priori expectancy was manipulated, and attention bias was measured, using a well-validated paradigm. A visual search array was presented, with one of two targets: spiders (threatening) or birds (neutral). A verbal cue stating the likelihood of encountering a target preceded the array, creating congruent and incongruent trials. Following cue presentation, preparatory processes were examined using the contingent negative variation (CNV) component. Following target presentation, two components were measured: early posterior negativity (EPN) and late positive potential (LPP), reflecting early and late stages of natural selective attention toward emotional stimuli, respectively. Behaviorally, spiders were found faster than birds, and congruency effects emerged for both targets. For the CNV, a non-significant trend of more negative amplitudes following spider cues emerged. As expected, EPN and LPP amplitudes were larger for spider targets compared to bird targets. Data-driven, exploratory, topographical analyses revealed different patterns of activation for bird cues compared to spider cues. Furthermore, 400-500 ms post-target, a congruency effect was revealed only for bird targets. Together, these results demonstrate that while expectancy for spider appearance is evident in differential neural preparation, the actual appearance of spider target overrides this expectancy effect and only in later stages of processing does the cueing effect come again into play.


Asunto(s)
Anticipación Psicológica , Sesgo Atencional , Electroencefalografía , Potenciales Evocados , Arañas , Humanos , Femenino , Animales , Arañas/fisiología , Potenciales Evocados/fisiología , Masculino , Adulto Joven , Adulto , Sesgo Atencional/fisiología , Anticipación Psicológica/fisiología , Señales (Psicología) , Atención/fisiología , Aves/fisiología , Miedo/fisiología
8.
Biol Lett ; 20(2): 20230330, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38351747

RESUMEN

Adaptive evolution relies on both heritable variation and selection. Variation is the raw material upon which selection acts, so any mechanism that limits or prevents the generation of heritable variation reduces the power of selection to lead to adaptation. Such limitations are termed evolutionary constraints. While it is widely accepted that constraints play an important role in shaping evolutionary outcomes, their relative importance, as opposed to adaptation, in determining evolutionary outcomes remains a subject of debate. Evolutionary constraints are often evoked as the reason behind the persistence of inaccurate mimicry. Here, we compared the variation and accuracy of body-shape mimicry in ant-mimicking spiders with that of ant-mimicking insects, predicting greater constraints, and hence inaccuracy, in spiders mimicking ants, due to their evolutionary distance from the ant model. We found high inter-species variation in mimetic accuracy, but dorsally, no overall difference in mimetic accuracy between spider and insect mimics, which is inconsistent with a constraint causing inaccurate mimicry. Our study provides empirical evidence suggesting that imperfect mimicry in spiders and insects is predominantly shaped by adaptive processes rather than constraints or chance. Our findings contribute to our understanding of the mechanisms underlying evolutionary diversity and the processes that shape phenotypic outcomes.


Asunto(s)
Conducta Predatoria , Arañas , Animales , Conducta Predatoria/fisiología , Arañas/fisiología
9.
Evolution ; 78(4): 612-623, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38280203

RESUMEN

Female spiders and praying mantises are renowned for their cannibalism of male partners before, during, or after mating. While several hypotheses have been proposed to explain species-specific examples of sexual cannibalism, much variation remains unexplained, including why the timing of cannibalism varies across taxa. Here, I outline how sexually cannibalistic behavior could evolve via sexually antagonistic selection as a type of behavioral resistance to male-imposed mating costs, and how such a generalizable interpretation provides a framework for understanding the evolution of both sexual cannibalism in females and anti-cannibalistic traits in males. I discuss how differences between mating systems that physiologically constrain males to mate only once (monogyny) or twice (bigyny) and systems where the sexes can potentially mate multiply (polygyny and polyandry) are likely to influence how sexual conflict shapes cannibalistic behavior. I review key examples from the literature that suggest how sexually cannibalistic behavior might function as a female resistance trait and provide comprehensive predictions for testing this hypothesis empirically.


Asunto(s)
Conducta Sexual Animal , Arañas , Animales , Femenino , Masculino , Conducta Sexual Animal/fisiología , Canibalismo , Reproducción , Sexo , Arañas/fisiología
10.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054359

RESUMEN

Motion and camouflage were previously considered to be mutually exclusive, as sudden movements can be easily detected. Background matching, for instance, is a well-known, effective camouflage strategy where the colour and pattern of a stationary animal match its surrounding background. However, background matching may lose its efficacy when the animal moves, as the boundaries of the animal become more defined against its background. Recent evidence shows otherwise, as camouflaged objects can be less detectable than uncamouflaged objects even while in motion. Here, we explored whether the detectability of computer-generated stimuli varies with the speed of motion, background (matching and unmatching) and size of stimuli in six species of jumping spiders (Araneae: Salticidae). Our results showed that, in general, the responsiveness of all six salticid species tested decreased with increasing stimulus speed regardless of whether the stimuli were conspicuous or camouflaged. Importantly, salticid responses to camouflaged stimuli were significantly lower compared with those to conspicuous stimuli. There were significant differences in motion detectability across species when the stimuli were conspicuous, suggesting differences in visual acuity in closely related species of jumping spiders. Furthermore, small stimuli elicited significantly lower responses than large stimuli across species and speeds. Our results thus suggest that background matching is effective even when stimuli are in motion, reducing the detectability of moving stimuli.


Asunto(s)
Percepción de Movimiento , Arañas , Animales , Percepción de Movimiento/fisiología , Movimiento , Movimiento (Física) , Agudeza Visual , Arañas/fisiología
11.
Mater Horiz ; 11(3): 822-834, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38018413

RESUMEN

Recent advances in bioelectronics in mechanical and electrophysiological signal detection are remarkable, but there are still limitations because they are inevitably affected by environmental noise and motion artifacts. Thus, we develop a gel damper-integrated crack sensor inspired by the vibration response of the viscoelastic cuticular pad and slit organs in a spider. Benefitting from the specific crack structure design, the sensor possesses excellent sensing behaviors, including a low detection limit (0.05% strain), ultrafast response ability (3.4 ms) and superior durability (>300 000 cycles). Such typical low-amplitude fast response properties allow the ability to accurately perceive vibration frequency and waveform. In addition, the gel damper exhibits frequency-dependent dynamic mechanical behavior that results in improved stability and reliability of signal acquisition by providing shock resistance and isolating external factors. They effectively attenuate external motion artifacts and low-frequency mechanical noise, resulting in cleaner and more reliable signal acquisition. When the gel damper is combined with the crack-based vibration sensor, the integrated sensor exhibits superior anti-interference capability and frequency selectivity, demonstrating its effectiveness in extracting genuine vocal vibration signals from raw voice recordings. The integration of damping materials with sensors offers an efficient approach to improving signal acquisition and signal quality in various applications.


Asunto(s)
Arañas , Vibración , Animales , Arañas/fisiología , Reproducibilidad de los Resultados , Movimiento (Física)
12.
Proc Biol Sci ; 290(2009): 20232035, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876190

RESUMEN

Many animals use self-built structures (extended phenotypes) to enhance body functions, such as thermoregulation, prey capture or defence. Yet, it is unclear whether the evolution of animal constructions supplements or substitutes body functions-with disparate feedbacks on trait evolution. Here, using brown spiders (Araneae: marronoid clade), we explored if the evolutionary loss and gain of silken webs as extended prey capture devices correlates with alterations in traits known to play an important role in predatory strikes-locomotor performance (sprint speed) and leg spination (expression of capture spines on front legs). We found that in this group high locomotor performance, with running speeds of over 100 body lengths per second, evolved repeatedly-both in web-building and cursorial spiders. There was no correlation with running speed, and leg spination only poorly correlated, relative to the use of extended phenotypes, indicating that web use does not reduce selective pressures on body functions involved in prey capture and defence per se. Consequently, extended prey capture devices serve as supplements rather than substitutions to body traits and may only be beneficial in conjunction with certain life-history traits, possibly explaining the rare evolution and repeated loss of trapping strategies in predatory animals.


Asunto(s)
Carrera , Arañas , Animales , Arañas/fisiología , Conducta Predatoria/fisiología , Seda
13.
Sci Rep ; 13(1): 17219, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821480

RESUMEN

Miniaturization is an evolutionary trend observed in many animals. Some arachnid groups, such as spiders and mites, demonstrate a strong tendency toward miniaturization. Some of the most miniaturized spiders belong to the family Anapidae. In this study, using light and confocal microscopy and 3D modelling, we provide the first detailed description of the anatomy of a spider of the genus Rayforstia, which is only 900 µm long. In comparison with larger spiders, Rayforstia has no branching of the midgut in the prosoma and an increased relative brain volume. In contrast to many miniature insects and mites, the spider shows no reduction of whole organ systems, no allometry of the digestive and reproductive systems, and also no reduction of the set of muscles. Thus, miniature spider shows a more conserved anatomy than insects of a similar size. These findings expand our knowledge of miniaturization in terrestrial arthropods.


Asunto(s)
Arácnidos , Arañas , Animales , Arañas/fisiología , Evolución Biológica , Insectos , Miniaturización
14.
Oecologia ; 202(4): 669-684, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37540236

RESUMEN

Lures and other adaptations for prey attraction are particularly interesting from an evolutionary viewpoint because they are characterized by correlational selection, involve multicomponent signals, and likely reflect a compromise between maximizing conspicuousness to prey while avoiding drawing attention of enemies and predators. Therefore, investigating the evolution of lure and prey-attraction adaptations can help us understand a larger set of traits governing interactions among organisms. We review the literature focusing on spiders (Araneae), which is the most diverse animal group using prey attraction and show that the evolution of prey-attraction strategies must be driven by a trade-off between foraging and predator avoidance. This is because increasing detectability by potential prey often also results in increased detectability by predators higher in the food chain. Thus increasing prey attraction must come at a cost of increased risk of predation. Given this trade-off, we should expect lures and other prey-attraction traits to remain suboptimal despite a potential to reach an optimal level of attractiveness. We argue that the presence of this trade-off and the multivariate nature of prey-attraction traits are two important mechanisms that might maintain the diversity of prey-attraction strategies within and between species. Overall, we aim to stimulate research on this topic and progress in our general understanding of the diversity of predator and prey interactions.


Asunto(s)
Arañas , Animales , Arañas/anatomía & histología , Arañas/clasificación , Arañas/fisiología , Conducta Predatoria , Conducta Animal , Adaptación Fisiológica , Selección Genética
15.
Oecologia ; 202(4): 729-742, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37552361

RESUMEN

Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.


Asunto(s)
Ecosistema , Arañas , Animales , Conducta Predatoria/fisiología , Arañas/fisiología , Nutrientes , Estaciones del Año
16.
Ecology ; 104(8): e4116, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263980

RESUMEN

Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large-scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post-establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4- or 12-species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.


Asunto(s)
Arañas , Árboles , Animales , Humanos , Árboles/fisiología , Ecosistema , Biodiversidad , Arañas/fisiología , Bosques
17.
Environ Sci Technol ; 57(21): 8085-8095, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37200151

RESUMEN

Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.


Asunto(s)
Nanopartículas , Arañas , Animales , Ecosistema , Cadena Alimentaria , Cobre/farmacología , Ríos , Insectos , Arañas/fisiología , Oro/farmacología
18.
Proc Biol Sci ; 290(1997): 20230089, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122254

RESUMEN

In many regions fire regimes are changing due to anthropogenic factors. Understanding the responses of species to fire can help to develop predictive models and inform fire management decisions. Spiders are a diverse and ubiquitous group and can offer important insights into the impacts of fire on invertebrates and whether these depend on environmental factors, phylogenetic history or functional traits. We conducted phylogenetic comparative analyses of data from studies investigating the impacts of fire on spiders. We investigated whether fire affects spider abundance or presence and whether ecologically relevant traits or site-specific factors influence species' responses to fire. Although difficult to make broad generalizations about the impacts of fire due to variation in site- and fire-specific factors, we find evidence that short fire intervals may be a threat to some spiders, and that fire affects abundance and species compositions in forests relative to other vegetation types. Orb and sheet web weavers were also more likely to be absent after fire than ambush hunters, ground hunters and other hunters suggesting functional traits may affect responses. Finally, we show that analyses of published data can be used to detect broad-scale patterns and provide an alternative to traditional meta-analytical approaches.


Asunto(s)
Incendios , Arañas , Animales , Arañas/fisiología , Ecosistema , Filogenia , Bosques
19.
J Theor Biol ; 558: 111357, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36410450

RESUMEN

The recent discovery that some terrestrial arthropods can detect, use, and learn from weak electrical fields adds a new dimension to our understanding of how organisms explore and interact with their environments. For bees and spiders, the filiform mechanosensory systems enable this novel sensory modality by carrying electric charge and deflecting in response to electrical fields. This mode of information acquisition opens avenues for previously unrealised sensory dynamics and capabilities. In this paper, we study one such potential: the possibility for an arthropod to locate electrically charged objects. We begin by illustrating how electrostatic interactions between hairs and surrounding electrical fields enable the process of location detection. After which we examine three scenarios: (1) the determination of the location and magnitude of multiple point charges through a single observation, (2) the learning of electrical and mechanical sensor properties and the characteristics of an electrical field through several observations, (3) the possibility that an observer can infer their location and orientation in a fixed and known electrical field (akin to "stellar navigation"). To conclude, we discuss the potential of electroreception to endow an animal with thus far unappreciated sensory capabilities, such as the mapping of electrical environments. Electroreception by terrestrial arthropods offers a renewed understanding of the sensory processes carried out by filiform hairs, adding to aero-acoustic sensing and opening up the possibility of new emergent collective dynamics and information acquisition by distributed hair sensors.


Asunto(s)
Artrópodos , Arañas , Abejas , Animales , Artrópodos/fisiología , Arañas/fisiología , Electricidad , Cabello/fisiología
20.
Sci Rep ; 12(1): 19045, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351940

RESUMEN

Spider webs are finely tuned multifunctional structures, widely studied for their prey capture functionalities such as impact strength and stickiness. However, they are also sophisticated sensing tools that enable the spider to precisely determine the location of impact and capture the prey before it escapes. In this paper, we suggest a new mechanism for this detection process, based on potential modal analysis capabilities of the spider, using its legs as distinct distributed point sensors. To do this, we consider a numerical model of the web structure, including asymmetry in the design, prestress, and geometrical nonlinearity effects. We show how vibration signals deriving from impacts can be decomposed into web eigenmode components, through which the spider can efficiently trace the source location. Based on this numerical analysis, we discuss the role of the web structure, asymmetry, and prestress in the imaging mechanism, confirming the role of the latter in tuning the web response to achieve an efficient prey detection instrument. The results can be relevant for efficient distributed impact sensing applications.


Asunto(s)
Seda , Arañas , Animales , Seda/química , Vibración , Conducta Predatoria/fisiología , Arañas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA